K-mer counting, cardinality
estimation, Approximate

Membership Query (AMQ) data
structures & perfect hashes



Scalability at the tforefront

I've spoken a lot in this class about the need tor scalable
solutions, but how big of a problem is it”

Take (one of) the simplest problems you might imagine:

A collection of sequencing reads S and
a paramater K

Find: The multiplicity of every length-k substring
(k-mer) that appears in S

This is the k-mer counting problem



K-mer counting

A large number of recent papers tackle this (or a closely
related) problem:

Tallymer, Jellyfish, DSK, KMC{1,2,3}, BFCounter,
sclurtle, Girbil, KAnalyze, khmer, ... and many
more



How might we count k-mers

A naive approach;

S ATACAGGACGTIC

While S is non-empty:

Draw a string s, from S TAC

For every k-mer, K In s:
counts[k] += 1



What's wrong with this approach?

Speed & Memory usage

Routinely encounter datasets with 10 - 100 x 10° nucleotides
Just hashing the k-mers and resolving collisions takes time

On the order of 1-10 x 1092 or more distinct k-mers

It we used a 4-byte unsigned int to store the count, we'd
be using 40GB just for counts

But, hashes have overhead (load factor < 1), and often
need to store the key as well as the value

Easily get to > 100GB of RAM



Smart, parallel hashing actually pretty good

f we put some thought and engineering effort into the
nashing approach, it can actually do pretty well. This
IS the insight behind the Jellyfish program.

Massively parallel, lock-free, k-mer counting
— most parallel accesses won't cause a collision

Efficient storage of hash table values

— bit-packed data structure

— small counter with multiple entries tor
high-count k-mers

Efficient storage of keys

— f: Uk = Uk, and let hash(k) = f(k) mod M

— Can reconstruct k from pos in hash table (quotient) and
remainder.



Smart, parallel hashing actually pretty good

Efficient storage of keys
— f: Uk = Uk, and let hash(k) = f(k) mod M
— recall: we can represent f(k) as f(k) = gM + r

— Can reconstruct k from pos in hash table (quotient, g) and
remainder, r. The quotient is simply encoded as the
position.

— Extra work must be done since collisions can occur

— For a general coverage of this idea, see the Quotient Filter
data structure by Bender et al. (2011)

"Don't thrash: how to cache your hash on flash" (PDF). Proceedings of the 3rd USENIX conference on Hot topics in storage and file systems (HotStorage'11). Retrieved 21 July 2012.


http://static.usenix.org/events/hotstorage11/tech/final_files/Bender.pdf
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Percent activity (%)

System utilization of Jellyfish
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Even bigger data

For very large datasets, even this approach may use
too much memory. How can we do better?



Even bigger data

For very large datasets, even this approach may use
too much memory. How can we do better?

Solve a different (but closely-related) problem

What it we just want to know “it" a k-mer is present”?

What if we just wanted “approximate” counts”



Bloom Filters

Originally designed to answer probabilistic membership
gueries:

s element e In my set 57?
If yes, always say yes

If no, say no with large probability

False positives can happen; talse negatives cannot.



Bloom Filters

For a set of size N, store an array of M bits
Use k different hash functions, {ho, ..., hk-1}

To insert e, set Alhi(e)] = 1forO<i<Kk
To query for e, check if Alhi(e)] = 1for0 <i <Kk
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Image by David Eppstein - self-made, originally for a talk at WADS 2007




Bloom Filters

f hash functions are good and sufficiently
independent, then the probability of false positives is
ow and controllable.

How low?

{x,y,2}
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Image by David Eppstein - self-made, originally for a talk at WADS 2007




False Positives

Let g be the fraction of the m-bits which remain as 0O after n
Insertions.

The probability that a randomly chosen bitis 1 is 1-Q.

But we need a 1 in the position returned by k different hash
functions; the probability of this is (1-Q)k

We can derive a formula for the expected value of g,
for a filter of m bits, after n insertions with k different hash
functions:

Elg] = (1 - 1/m)x

*analysis of Mitzenmacher and Upfal



False Positives

Mitzenmacher & Untal used the Azuma-Hoeffding
inequaltiy to prove (without assuming the probability of
setting each bit is independent) that

A \?

Pr(lg — Bl = ) < 2exp(—2—)

That is, the random realizations of g are highly
concentrated around E[qg], which yields a false positive
prob of:

1 kn\ ¥ .
ZPT )(1—1)" (1E[Q])k(1{1m} ) ~ (1 — e )k

*analysis of Mitzenmacher and Upfal



False Positives
ZPr )1 —1)" ~ (1 - Elg])" = (1 {1— ;}kn) ~ (1—6_%”)/%

This lets us choose optimal values to achieve a target false
positive rate. For example, assume m & n are given. Then we
can derive the optimal k

=(m/n)In2 = 2k=0.6185 mn

We can then compute the false positive prob

p=(1—e (HM2E)(22)

Inp = —E(IHQ)Q —
n
ninp
T, —

(In 2)2



False Positives

1 kn k
) Prg=t(1-1)"~(1-Elg)" = (1 {1——} ) (1— e 5k

™m
t
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This lets us choose optimal values to achieve a target false
positive rate. For example, assume m & n are given. Then we
can derive the optimal k

@ (Mm/n) In 2 = 2+~ 0.6185 mi

We can then compute the false positive prob

p=(1-— o~ (2 In 2)%)(% In2) __ given an expectead

# elems
m
Inp = ——(In2)? and a desired
n " false positive rate
. M
m we can compute
(In2)? the optimal size and

/

# of has functions



Cardinality Estimation

Consider a “simpler” problem than indexing, or
even k-mer counting:

A collection of sequencing reads S and
paramater k and t.

Find: The number of k-mers that occur 1 time, 2
times, ..., t times.

This Iis the k-mer cardinality estimation problem



Cardinality Estimation

There Is the hope that we can solve this
(approximately) very efficiently.

We need not record information for each
distinct k-mer, the output is simply a vector
of length t.

We'll discuss one particular approach for
solving this, introduced in ntCard P .

Advance Access Publication Date: 5 January 2017
Original Paper

Sequence analysis

ntCard: a streaming algorithm for cardinality
estimation in genomics data

Hamid Mohamadi’%*, Hamza Khan'? and Inanc Birol'%*

'Canada’s Michael Smith Genome Sciences Centre, British Columbia Cancer Agency, Vancouver, BC, V5Z 4S8,
Canada and “Faculty of Science, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada

*To whom correspondence should be addressed.
Associate Editor: Bonnie Berger

Received on October 31, 2016; revised on December 21, 2016; editorial decision on December 25, 2016; accepted on December 27, 2016



let f; be the number of distinct k-mers that appear i times

frequency histogram is list of f, 7 > 1

Define k-th frequency moment as Fj, = Z ic-f
=1

Estimate the Jf; , usually only care about
smallish maximum i (e.g. 64).



Basic idea: Hash the k-mers

64-bit hash

Fig. 1. 64-bit hash value generated by ntHash. The s left bits are used for sam-
pling the k-mers in input datasets and the r right bits are used as resolution
bit for building the reduced multiplicity table, with r + s < 64

§

’n

/

Use these bits to sub-sample
input data “uniformly”. Only
process a k-mer if uppermost
s bits are 0. Sub-sampling

at a rate of L

2s

Maintain an array
of size 2r and, count
the number of occurrences
of each r-bit pattern




When we encounter a k-mer’s hash:

00000000 001000

It the uppermost s bits are O

Then we increment the count in the cell determined by

the lowermost r bits

t(r) array holding counts /

The true cardinality histogram is the histogram we would
have if we used r=co, Clearly, we can’t do this, so we will

instead estimate that value given a fixed, finite r.



We want to estimate t(=), what is the relationship
between tN and tr+1)7?

1) = ¢+ 0D vmeo,...,27 - 1] (5)

where t\” denotes the count for entry n in table t

Let p” be the relative frequency (probability) of count i > 0
N table t")

Observe: #” -0 iff P =0and 1) =0

Mohamadi, Hamid, Hamza Khan, and Inanc Birol. "ntCard: a streaming algorithm for cardinality estimation in genomics data." Bioinformatics 33.9 (2017): 1324-1330.



Assuming distributions in both half of ti+1) are the same
py = (p{*tH)? (eq 6)
relates the frequencies of O counts in tn to tr+1)

Similarly, a count of 1 in t,(0 can happen only if
) =0and ) =1
or
) =1land ) =0

We can express this mathematically as:

pl(r) — 2p8r+1)p1(r+1) (eq 7)

Mohamadi, Hamid, Hamza Khan, and Inanc Birol. "ntCard: a streaming algorithm for cardinality estimation in genomics data." Bioinformatics 33.9 (2017): 1324-1330.



This rule can be generalized

Zp (r+1) -r+1 (eq 8)

zz’

Note that, Equations (6)—(8) can be solved for pgrﬂ) through the re-
cursive formula

(p(()r)) i fori =20

p§r+1) _ Zng) fori =1 (9)

l r ! r r .
(r+1) (PE) — ZPE, H)pff,l)) fori > 1

This tells us how to go from r to r+1, we want to
compute these values for r+x as x - oo

Mohamadi, Hamid, Hamza Khan, and Inanc Birol. "ntCard: a streaming algorithm for cardinality estimation in genomics data." Bioinformatics 33.9 (2017): 1324-1330.




we will call our estimates f;

p(OO)

i

fAi: o0
1-pge)

For example, for i =1, this can be calculated as

and fori=2 as

_—po'0s +5(1)
(by)In pg’

Mohamadi, Hamid, Hamza Khan, and Inanc Birol. "ntCard: a streaming algorithm for cardinality estimation in genomics data." Bioinformatics 33.9 (2017): 1324-1330.



In general, for f.,i > 1, we can write the following equation

fi= N i—j

ul /. k—1
> I\ el
I
V(l,u) € Z*s.t. k=1 Up
Dtk =1—]
2ok b =i

where ug = 0, uy, # uyp for all k # k', and |#| = argmax, {u; }.

UGLY!

Mohamadi, Hamid, Hamza Khan, and Inanc Birol. "ntCard: a streaming algorithm for cardinality estimation in genomics data." Bioinformatics 33.9 (2017): 1324-1330.



This complex-looking formula can also be written in the follow-
ing recursive form

r i—1 ;4() £
£ = —p; 12717,-_,-1(,- (14)
py'Inpy) 1= py

The two terms of this equation can be interpreted as follows. The
first term corresponds to count frequencies 7 in table t) assuming
none of the entries collided with any non-zero entries through fold-
ing rounds from lim,_,., (7 + x) to . The second term is a correction
to the first term, accounting for all collisions of (i —j),0 < j < i

and 7. result of which is a count frequency of :.

Mohamadi, Hamid, Hamza Khan, and Inanc Birol. "ntCard: a streaming algorithm for cardinality estimation in genomics data." Bioinformatics 33.9 (2017): 1324-1330.



We can also estimate the Oth order moment as
FO — lim 2S(1 _p(gr+x))2r+x — _ DStr lnp(r)

0
X— 00

together with the f;, this is enough to compute all we want

Algorithm 1. The ntCard algorithm

1: function Update(k-mer)
2: for each read seq do

3 for each k-mer in seq do

- h «— ntHash (k-mer) [> Compute 64-bit » using ntHash
5 if hgs.64—s+1 = 0° then > Checking the s left bit in »
6: i — b,q [> r is resolution parameter
7 t;—t;+1

8: function Estimate

9: fori— 1to2 do

10: Pei] < Pui] + 1
11: for i + 1 to t,,u dO
12: Di < p,-/2’

13: Fy = —Inpo x 2°"7 > F, estimate
14: fori« 1to tyu do |

15: f i po_lfl’ o —1 ;;} m;—(;f’ > Relative estimates
16: for i« 1 to t,,,, do

17: fi—f ; X Fy > f; estimates

18: return f, F

Mohamadi, Hamid, Hamza Khan, and Inanc Birol. "ntCard: a streaming algorithm for cardinality estimation in genomics data." Bioinformatics 33.9 (2017): 1324-1330.



Results

Table 1. Dataset specification

Dataset Read number  Read length Total bases Size

HG004 868,593,056 250bp 217,148,264,000 480 GB
NA19238 913,959,800 250bp 228,489,950,000 500 GB
PG29 6,858,517,737 250bp 1,714,629,434,250 2.4 TB

Table 2. Accuracy of algorithms in estimating Fo and f; for HG004
reads

k DSK ntCard KmerGenie KmerStream Khmer
32 f1 13,319,957,567 0.01% 0.97% 7.04% -

Fo 16,539,753,749 0.02% 0.64% 5.12% 0.67%
64 f1 17,898,672,342 0.02% 0.35% 0.73% -

Fo 21,343,659,785 0.00% 0.22% 0.66% 0.15%
9% f1 18,827,062,018 0.36% 0.87% 0.00% -

Fo 22,313,944,415 0.24% 0.69% 0.05% 0.31%
128 f; 18,091,241,186 0.36% 0.76 % 0.40% -

Fo 21,555,678,676 0.25% 0.62% 0.20% 0.30%

The DSK column reports the exact k-mer counts, and columns for the other

tools report percent errors.



Table 3. Accuracy of algorithms in estimating F; and f; for
NA19238 reads

k DSK ntCard KmerGenie KmerStream Khmer
32 f; 14,881,561,565 0.00% 0.53% 6.36% —

F, 18,091,801,391 0.00% 0.40% 4.64% 1.82%
64 f1 19,074,667,480 0.02% 0.75% 0.68% -

Fo 22,527,419,136 0.01% 0.77% 0.65% 1.22%
96 f1 19,420,503,673 0.22% 0.66% 0.09% E

Fo 22,932,238,161 0.16% 0.66% 0.07% 0.46 %
128 f; 17,902,027,438 0.21% 0.85% 0.19% -

Fo 21,421,517,759 0.13% 0.76% 0.03% 1.05%
Table 4. Accuracy of algorithms in estimating Fy and f; for PG29
reads
k DSK ntCard KmerGenie KmerStream Khmer
32 £ 27,430,910,938 0.02% 15.33% 9.41% -

Fo 42,642,198,777 0.01% 11.02% 7.37% 8.86%
64 f1 44,344,130,469 0.04% 16.36% 2.61% -

Fy 67,800,291,613 0.02% 11.14% 1.73% 11.18%
9% f1 43,300,244,443 0.66% 17.51% 0.73% -

Fy, 69,855,690,006 0.46% 11.13% 0.57% 9.36%
128 f; 32,089,613,024 0.40% 14.82% 0.06% —

Fo 58,195,246,941 0.30% 8.35% 0.27% 7.39%




Captures the whole histogram we
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Fig. 2. k-mer frequency histograms for human genomes HG004 and NA19238 (rows 1 and 2, respectively), and the white spruce genome PG29 (row 3). We have

used DSK k-mer counting results as our ground truth in evaluation (orange circle data points). The k-mer coverage frequency results, f;..fs; of ntCard and
KmerGenie for different values of kK = 32,64, 96, 128 (the four columns from left to right) are shown with the symbols (+) and (<), respectively



The ntCard algorithm is fast

HG004

1000

750

500+

Time (min)

250+

—

© DSK—ntCard ¢ KmerGenie [ KmerStream A\ Khmer

541

527

Fig. 3. Runtime of DSK, ntCard, KmerGenie, KmerStream and Khmer for all three datasets, HG004, NA19238 and PG29. We have calculated the runtime of all algo-
rithms for different values of k in {32,64,96,128}. As we see in the plots, ntCard estimates the full k-mer coverage frequency histograms >15x faster than

KmerStream

The memory usage of ntCard on all 3 datasets is ~500MB
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Open challenge: Can we solve this problem sub-linearly
(without looking at all input k-mers)?




The quotient filter for exact & approximate
counting
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The Counting Quotient Filter

Compact, lossless representation of multiset h(S)

h:U —{0,...,2r-1} is a hash function, S is multiset,
U is the universe from which S Is drawn

X € S, h(x) Is a p-bit number.

Q is an array of 24d r-bit slots

he quotient filter divides h(x) into g(h(x)), r(h(x));
the first g and remaining r bits of h(x) where p=qg+r

Put r(h(x)) into Q[a(h(x))]



The Counting Quotient Filter (CQF)
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Let k be a key and h(k) a p-bit hash value

h(k)
N
bits N ——

g-bits r-bits

Clever encoding allows low-overhead storage of element counts
(use key slots to store values in base 2r-1; smaller values = fewer bits)

Careful engineering & use of efficient rank & select to resolve
collisions leads to a fast, cache-friendly data structure

* |dea goes back at least to Knuth (TACOP vol 3)



The Counting Quotient Filter (CQF)
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Clever encoding allows low-overhead storage of element counts
(use key slots to store values in base 2r-1; smaller values = fewer bits)

Careful engineering & use of efficient rank & select to resolve
collisions leads to a fast, cache-friendly data structure

* |dea goes back at least to Knuth (TACOP vol 3)



The Counting Quotient Filter (CQF)
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Approximate Multiset Representation unends N
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Works based on quotienting* & fingerprinting keys

Let k be a key and h(k) a p-bit hash value __Determines position in
array of size 27 r-bit slots

h(k) /\ Value stored in

B ~ . . .
it W‘# r-bit slot (fingerprint)
p-bits

g-bits r-bits

Clever encoding allows low-overhead storage of element counts
(use key slots to store values in base 2r-1; smaller values = fewer bits)

Careful engineering & use of efficient rank & select to resolve
collisions leads to a fast, cache-friendly data structure

* |dea goes back at least to Knuth (TACOP vol 3)



The Counting Quotient Filter

In reality, a bit more complicated because collisions
can occur. What if Q[a(h(x))] is occupied by some
other element (as the result of an earlier collision)?

0 1 2 3 4 5 6 7

occupieds | 0 0 1 0 0 0 1

runends 0 0 0 1 0 1
remainders hi(d)h1(e) ha(f)
< 24 >

Figure 1: A simple rank-and-select-based quotient filter. The colors
are used to group slots that belong to the same run, along with the
runends bit that marks the end of that run and the occupieds bit that
indicates the home slot for remainders in that run.

Move along until you find the next free slot.
Metadata bits allow us to track “runs™ and skip
elements other than the key of interest efticiently.




The Counting Quotient Filter

How to count?

Rather than having a separate array for counting (a
la the counting Bloom filter), use the slots of Q
directly to encode either r(h(x)), or counts!

The CQF uses a somewhat complex encoding
scheme (base 2r-2), but this allows arbitrary
variable length counters.

This is a huge win for highly-skewed datasets with
non-uniform counts (like most of those we
encoutner).



The Counting Quotient Filter, results
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Figure 4: Number of bits per element for the RSQF, QF, BF, and
CF. The RSQF requires less space than the CF amd less space than
the BF for any false-positive rate less than 1/64. (Higher is better)



The Counting Quotient Filter, results

Data Structure CQF CBF
Zipfian random inserts per sec 13.43 0.27
Zipfian successful lookups per sec | 19.77 2.15
Uniform random lookups per sec | 43.68 1.93
Bits per element 11.71 | 337.584

(b) In-memory Zipfian performance (in millions
of operations per second).

—m— CQF (worst case)
—=— CQF (best case)
10° - —e— CBF (worst case)
—&— CBF (best case)
5 o SBF (worst case)
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Size of the data structure in bits
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10t £ 1 | 1 -

0 5-10° 1-107 1.5- 107
Number of distinct items in the multiset (k)

Figure 5: Space comparison of CQF, SBF, and CBF as a function of
the number of distinct items. All data structures are built to support
upton = 1.6 x 107 insertions with a false-positive rate of § = 27°.



The Counting Quotient Filter, results
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Figure 8: In-memory performance of the CQF and CBF on data with a Zipfian distribution. We don’t include the CF in these benchmarks
because the CF fails on a Zipfian input distribution. The load factor does not go to 95% in these experiments because load factor is defined
in terms of the number of distinct items inserted in the data structure, which grows very slowly in skewed data sets. (Higher is better.)



The Counting Quotient Filter, results
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Figure 9: In-memory performance of the counting quotient filter with real-world data sets and with multiple threads, and percent slot usage
with skewed distribution.



Squeakr, applying the CQF to k-mer counting

Counting Memory

Table 1. datasets used in the experiments

Dataset File size #Files # k-merinstances #Distinct k-mers
Evesca 3.3 11 4134 078 256 632 436 468
G.gallus 25.0 15 25337 974 831 2727 529 829
M.balbisiana 46.0 2 41 063 145 194 965 691 662
H.sapiens 1 67.0 6 62 837 392 588 6353512 803

H.sapiens 2 99.0 48 98 892 620 173 6 634 382 141

Note: The file size is in GB. All the datasets are compressed with gzip
compression.

Table 2. Gigabytes of RAM used by KMC2, Squeakr, Squeakr-exact,
and Jellyfish2 for various datasets for in-memory experiments for

k=28

dataset KMC2 Squeakr Squeakr-exact Jellyfish2
Fvesca 8.3 4.8 9.3 8.3
G.gallus 32.8 13.0 28.8 31.7
M.balbisiana 48.3 11.1 14.2 16.3
H.sapiens 1 71.4 22.1 51.5 61.8

H.sapiens 2 107.4 30.8 60.1 61.8




Squeakr, applying the CQ

Table 3. k-mer counting performance of KMC2, Squeakr, Squeakr-exact, and Jellyfish2 on different datasets for k=28

Counting performance

- to k-mer counting

System Fvesca G.gallus M.balbisiana H.sapiens 1 H.sapiens 2
8 16 8 16 8 16 8 16 8 16

KMC2 91.68 67.76 412.19 266.546 721.43 607.78 1420.45 848.79 1839.75 1247.71
Squeakr 116.56 64.44 739.49 412.82 1159.65 662.53 1931.97 1052.73 3275.20 1661.77
Squeakr-exact 146.56 80.58 966.27 501.77 1417.48 763.88 2928.06 1667.98 5016.46 2529.46
Jellyfish2 257.13 172.55 1491.25 851.05 1444.16 886.12 4173.3 2272.27 6281.94 3862.82
Table 4. k-mer counting performance of KMC2, Squeakr, and Jellyfish2 on different datasets for k=55
System Fvesca G.gallus M.balbisiana H.sapiens 1 H.sapiens 2

8 16 8 16 8 16 8 16 8 16
KMC2 233.74 123.87 979.20 1117.35 1341.01 1376.51 3525.41 2627.82 4409.82 3694.85
Squeakr 138.32 75.48 790.83 396.36 1188.15 847.83 2135.71 1367.56 3320.67 2162.97
Jellyfish2 422.220 294.93 1566.79 899.74 2271.33 1189.01 3716.76 2264.70 6214.81 3961.53




Squeakr, applying the CQF to k-mer counting
Query performance

Table 5. Random query performance of KMC2, Squeakr, Squeakr-
exact, and Jellyfish2 on two different datasets for k=28

System G.gallus M.balbisiana

Existing  Non-existing  Existing  Non-existing

KMC2 1495.82 470.14 866.93 443.74
Squeakr 303.68 52.45 269.24 40.73
Squeakr-exact 389.58 58.46 280.54 42.67
Jellyfish2 884.17 978.57 890.57 985.30

Table 6. de Bruijn graph query performance on different datasets

System Dataset Max pathlen Running times

Counting Query Total

KMC2  G.gallus 122 266 23097 23363
Squeakr G.gallus 92 412 3415 3827
KMC2  M.balbisiana 123 607 6817 7424
Squeakr M.balbisiana 123 662 1471 2133

Note: The counting time is calculated using 16 threads. The query time is
calculated using a single thread. Time is in seconds. We excluded Jellyfish2
from this benchmark because Jellyfish2 performs slowly compared to KMC2
and Squeakr for both counting and query (random query and existing k-mer

query).



(Minimum) Perfect Hash Functions

We’ve been using the idea of hashing a lot in this lecture.

One class of hash functions that are particularly interesting
are Minimum Perfect Hash Functions (MPHF).

S : set of keys
f: S —{1,2,...|S|} s.t.

v uVveS, u=vthenf(u) e {1,2,...|S|[}
and f(v) € {1,2,...|S|} and f(u) = f(v)

In other words. fis an injective function from S to the
integers 1..|S| (or 0..|S|-1) such that every element of S maps
to some distinct integer.

Note: for x ¢ S, no property is guaranteed about f(x)



Construction of a Perfect Hash Index

Key: We know meaningful sub-patterns ahead of time

Domain (e.g. keys) Range (e.g. [0, mIDI])

all possible keys

Hash

maps elements from the domain
into the range

collisions - different keys with same value | ‘
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Construction of a Perfect Hash Index

Key: We know meaningful sub-patterns ahead of time

Domain (e.g. keys) Range (e.g. [0, mIDI])

all possible k-mers

Hash function

)
(@)
©
maps elements from the domain £
into the range
N—
—

Minimal maps keys to distinct integers in [0, IDI-1]

Perfect no coliisions - every key maps to its own value



(Minimum) Perfect Hash Functions

We'll talk about BBhash. My favorite algorithm for minimal
perfect hash construction. It’s not the most sophisticated
algorithm in the literature, but it is by-far the most practical.

https://github.com/rizkg/BBHash

Fast and Scalable Minimal Perfect Hashing for
Massive Key Sets®
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Observation: often MPHF are used to map keys (not stored) to
values (stored). The set of values is often much larger, per-
element than the MPHF. It’s worth spending a few more bits per-
element on the MPHF if we can construct it efficiently


https://github.com/rizkg/BBHash

Minimum Perfect Hash Functions

Theoretical minimum is logz(e)N = 1.44N bits / key
(regardless of # of keys).

Best methods, in practice, provide just under ~3 bits/key.

This approach provides a parameter y to trade off between
construction speed and final MPHF size and query time.



Successive hashing for construction

For a set of keys Fo construct a bit-array of size Ao = |Fo|.
Insert the keys into Ao using hash function ho()

Aoli] = 1 if exactly one element from Fo hashes to |

For all keys that collide under ho(), create a new key set F+
of size |F4]

Create a corresponding new bit vector As.

Repeat this process until there are no collisions.

In practice: Repeat this process until Fk is sufficiently
small, and use a traditional hash table to store it.



Successive hashing for construction

Ay A, A,
I | k 1 | k. 1 |k
hy, ’ h, ’ h, ’
> 0 > 0 | k,k, > 1k
0 | k,k, 1| k
FO 0 Fl 0 F2
1| k
0 k17k5
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A
[ | | |
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Detecting Collisions

During construction at each level d, collisions are detected using a temporary bit array C of
size |A4|. Initially all Cy bits are set to ’0. A bit of Cyli] is set to "1’ if two or more keys from
F,; have the same value ¢ given by hash function hy. Finally, if Cy[i] = 1, then Ay4li] = 0.
Formally:

Cali] = 1 = Agli] = 0;
(hqlz] =i and Agli] = 0 and Cyli] =0) = Agli] = 1 (and Cyli] = 0);
(hqlz] =i and Agli] = 1 and Cyli] =0) = Agli] = 0 and Cyli] = 1.




Querying & Minimality

A query of a key z is performed by finding the smallest d such that A4lhq(z)] = 1. The (non
minimal) hash value of z is then (}_,_, |Fi|) + ha(z).

To ensure that the image range of the function is [1,|Fp|], we compute the cumulative rank
of each "1’ in the bit arrays A;. Suppose, that d is the smallest value such that A4lhy(x)] = 1.
The minimal perfect hash value is given by ) ,_,(weight(A;) + rank(Aq[ha(x)]), where
weight(A;) is the number of bits set to '1” in the A; array, and rank(Ag|y]) is the number of
bits set to 1 in A4 within the interval (0, y], thus rank(Aaly]) = >, ., Aalj]. This is a classic
method also used in other MPHFs [3].



Tradeoff with the y parameter

The running time of the construction depends on the number of collisions on the A, arrays,
at each level d. One way to reduce the number of collisions, hence to place more keys at each
level, is to use bit arrays (Ag and Cy) larger than |Fy|. We introduce a parameter v € R,
v > 1, such that |Cy| = |A4| = 7| Fy|. With v = 1, the size of A is minimal. With v > 2,
the number of collisions is significantly decreased and thus construction and query times are
reduced, at the cost of a larger MPHF structure size.

» Lemma 1. For ~ > 0, the space of our MPHF is S = ve%N bits. The maximal space during
construction is S when v < log(2)™t, and 25 bits otherwise.



Tradeoff with the y parameter
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Figure 2 Left: Effects of the gamma parameter on the performance of BBhash when run on a set
composed of one billion keys, when executed on a single CPU thread. Times and MPHF size behave
accordingly to the theoretical analysis, respectively O(e'*/?), and O(ye'/?). Right: Performance
of the BBhash construction time according to the number of cores, using v = 2.



Comparison with other MPHF schemes
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Figure 3 Memory footprint and construction time with respect to the number of keys. All
libraries were run using default parameters, including v = 2 for BBhash. For a fair comparison,
BBhash was executed on a single CPU thread. Except for Sux4J, missing data points correspond to
runs that exceeded the amount of available RAM. Sux4J limit comes from the disk usage, estimated
at approximately 4TB for 10'! keys.



Comparison with other MPHF schemes

, Const. Disk.
Query MPHF size o Const.
Method time (ns) (bits/key) time memory” usage
(s) (GB)
BBhash v =1 271 3.1 60 (393) 3.2 (376) 8.23
BBhash v = 1 minirank 279 2.9 61(401) 3.2 (376) 8.23
BBhash = 2 216 3.7 35 (229) 4.3 (516) 4.45
BBhash v = 2 nodisk 216 3.7 80 (549) 6.2 (743) 0
BBhash v = 5 179 6.9 25 (162) | 10.7 (1,276) 1.52
EMPHF 246 2.9 2,642 | 247.1 (29,461)t |  20.8
EMPHF HEM 581 3.5 489 258.4 (30,798)1 22.5
CHD 1037 2.6 1,146 | 176.0 (20,982) 0
Sux4J 252 3.3 1,418 18.10 (2,158) 40.1




Take-nome message

The sheer scale of the data we have to deal with makes
even the most simple tasks (e.g. counting k-mers) rife with
opportunities for the development and application of
interesting and novel data structures and algorithms!



